
The Obix Configuration Framework:
Developer and User Guide

By

Obi Ezechukwu
May 06

Abstract
The Obix Configuration Framework—referred to in this document simply as “the
framework”—is an XML and Java based configuration framework which provides
developers with the ability to easily and quickly develop configurable software
applications. To paraphrase, it provides facilities for utilising XML-based
configuration files in modern application software, by providing standardised XML
schema definitions for configuration data, and, easy to use API for loading/auto-
reloading and general management of such data. This document is a user and
developer guide which describes the framework in detail, its features, API,
structure and design rationale, and the various options for integrating it into
software applications. This guide is divided into three main chapters, the first of
which covers the basic concepts of the framework, providing simple and practical
“quickstart” examples to demonstrate its features, and how it can be integrated
into application software. The second chapter covers the structure of the
framework, providing greater detail on the layout of configuration documents, as
well as a “beneath the scenes guide” to the implementation packaged in the
downloadable “base” distribution—including main interfaces and Java classes.
Finally, the third chapter focuses exclusively on the alternative approaches for
integrating the framework into application code. This chapter covers the basic
code-based approach as well as more advanced approaches, applicable to J2EE
and JMX environments, which require little or no coding. It details the various
framework extensions, provided in the base distribution, which facilitate the use of
open source frameworks such as Apache Log4j and Hibernate.

TABLE OF CONTENTS

1INTRODUCTION.. 3

1.1FEATURE SUMMARY...3
1.2QUICK-START EXAMPLES... 4

1.2.1A Basic Configuration File and Java Application..4
1.2.2Modules and Document-Import (Include) Example..6
1.2.3Auto-Reload Example... 11
1.2.4Examples Summary... 13

2FRAMEWORK STRUCTURE...13

2.1SPECIFICATION OVERVIEW.. 14
2.1.1Configuration Document Structure...14
2.1.2Java API..20

2.2THE JANEX IMPLEMENTATION..23
2.2.1Adapters and Factories...23
2.2.2Lifecycle Listeners...23

3APPLICATION INTEGRATION.. 24

3.1BASIC INTEGRATION (J2SE)...24
3.2ADVANCED (ENTERPRISE) INTEGRATION... 25

3.2.1Web Application Adaptor..25
3.2.2JMX Adaptor... 27

3.3EXAMPLES OF INITIALISATION VIA LISTENERS...28
3.3.1Log4J...28
3.3.2Hibernate...30

4CONCLUSION...31

5ACKNOWLEDGEMENTS... 31

The Obix Configuration Framework: User and Developer Guide 2

1 Introduction
Majority of Java applications, regardless of size, will to some extent utilize a
configuration mechanism that enables the application’s behaviour to be modified
without code changes. In fact one of the major reasons for the use of configuration
is to externalize values, which are likely to change frequently, and which if
embedded directly into code would lead to all-to-frequent code changes, re-
compilation and re-deployment. Examples of such values abound, and they
include: database connection strings; switching/control values—to enable or
disable a certain piece of functionality; environment (machine) specific entries—file
paths, resource locators etc. Externalizing such values simplify application support
and reduce costs, as well as increasing development throughput and minimizing
system outages.

If you are reading this document, then you probably already realise the importance
of configurable software, and are in the process of implementing/modifying such
software; consequently we will not bore you with the rationale behind software
configuration. We will instead proceed to tell you, briefly, in comparison to other
approaches for implementing configurable software, what this framework offers
you/your organization.

1.1 Feature Summary
• Use of XML configuration files. XML not only provides a mechanism for

encoding data so that it is portable across applications and environments,
but also supports a tree-structure which, when compared to other encoding
mechanisms, allows for denser and more structured data. Many Java
frameworks and tools such as Log4J and ANT already utilise XML files as
their standard configuration mechanism—and for good reason too. Not only
is the configuration data better structured—and consequently easier to
understand—but XML enables data-relationships to be better represented.
The framework mandates that configuration data be specified in XML
format, for similar reasons (and more) as will become clearer later on in this
document.

• Support for componentization/modularization of configuration data.
The framework recognizes that in a number of cases, it is necessary to
modularize/componentize configuration data; as such, it provides facilities
to support this. The framework organises a configuration set—a set of
related configuration files—around the concept of modules, where each
module can contain other modules. The child modules can either be defined
inline—explicitly within child XML elements—or as references to other
documents. A configuration document is thus a high-level module of
configuration which can contain other modules—either defined within the
same document or referenced from an external source. There is no limit to
the depth of modules, so child modules can have their own children, and so
on. At the top of the configuration tree is a root module, which is the
ancestor of all modules in the configuration set.

• Easy to use API. The framework’s API is designed around a “KISS”—“keep it
simple stupid”—philosophy, making it as intuitive as possible; the objective
being to flatten the learning curve involved in using it. Thus the
mechanisms for integrating it into application code are relatively simple.

• Support for Java specifications and other open source API. The
framework provides extensions which are built around Java standards such

The Obix Configuration Framework: User and Developer Guide 3

as the servlet specification, JMX1 and JNDI. These utilities generally provide
alternative (and code free) means of integrating the framework into
application code. Other utilities, also provided in the obix distribution,
simplify the use (specifically initialization) of other open source toolkits,
such as Log4J and Hibernate (see section 3.3 for concrete examples).

• Extensibility. The framework provides event notification interfaces, which
enable application developers to build upon, and extend its functionality. It
is also divided into two core parts, a specification, and an implementation,
where the specification governs interaction with application code, and the
implementation remains hidden but manages the details of the interaction
e.g. data loading, reloading, and JNDI binding etc. As such, developers are
able to use their own implementation if they wish to do so, or, to extend the
implementation provided in the obix distribution. The fact that its source is
freely obtainable also facilitates this.

• Free use of binaries and open access to source code. The framework is
completely free to use, and there are no restrictions on access to, or
modification of its source files or binaries. In other words, it is truly open
source without any strings attached.

1.2 Quick-Start Examples
In this subsection we illustrate, by example, how to integrate the framework—
using a basic approach—into a Java application. We provide three example
applications, the first of which consists of a simple Java class and a basic
configuration file. The purpose of this application is to demonstrate how to create a
simple configuration file, and how to access its constituent data values in a Java
program. The subsequent example applications are refinements of the first, and
are aimed at simulating more realistic real-world scenarios. The entire source code
and corresponding configuration files for these examples are included in the binary
archives, downloadable from the project website
http://obix-framework.sourceforge.net.

1.2.1A Basic Configuration File and Java Application
We start by creating a very basic configuration file—illustrated below—which holds
simple database connection information.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <entry entryKey="database.url">
 <value>jdbc:mysql://localhost:2500/mySQLdb</value>
 </entry>
 <entry entryKey="database.userId">
 <value>appuser</value>
 </entry>
 <entry entryKey="database.password">
 <value>nopassword</value>
 </entry>
</configuration>

As you can see, the configuration file has three entries, each with a single value.
To run this example, you will have to save this configuration file to a location,
which we assume to be “C:/ObixExampleApp/config/simple-configuration.xml”—if
you wish, you can change this to another location that is more convenient for you.

All we need now is a Java application which accesses the configuration values. For
simplicity, we provide a simple class—shown in the following listing—which just
reads the configuration values and prints them out.

1 Java Management Extensions

The Obix Configuration Framework: User and Developer Guide 4

import org.obix.configuration.Configuration;
import org.obix.configuration.ConfigurationAdapter;
import org.obix.configuration.ConfigurationAdapterFactory;

public class ConfigUser
{
 public static void main(String[] args)
 {
 String configLocation = "file:/C:/ObixExampleApp/config/simple-
configuration.xml";

 try{

 ConfigurationAdapterFactory
adapterFactory=ConfigurationAdapterFactory.newAdapterFactory();

 ConfigurationAdapter adapter=adapterFactory.create(null);

 adapter.setValidate(false);
 adapter.adaptConfiguration(Configuration.getConfiguration(),

 configLocation);

String dbURL =
 Configuration.getConfiguration().getStringValue("database.url");

String dbUserId =
 Configuration.getConfiguration().getStringValue("database.userId");

String dbPassword =
 Configuration.getConfiguration().getStringValue("database.password");

 System.out.println ("DB URL : " + dbURL);
 System.out.println ("DB UserId : " + dbUserId);

 System.out.println ("DB Password : " + dbPassword);

 }catch (Exception exce){
 exce.printStackTrace();
 }
 }//end method main(..)

}//end class

To run this class, you will need the framework library, obix-framework.jar, which
can be found in the ‘lib’ folder of the obix distribution. You will also need the
following third-party open-source libraries, dom.jar, jaxen-full.jar, sax.jar,
saxpath.jar and xercesImpl.jar, which can be found in the ‘lib/thirdPartyLibs’
folder of the obix distribution.

When executed, the class will produce the following output.

DB URL :jdbc:mysql://localhost: 2500/mySQLdb
DB UserId :appuser
DB Password :nopassword

To explain the inner workings of this example, we examine the example class
(ConfigUser.java) in more detail. The class starts with a string declaration
encapsulating the location of the configuration document (note that this
declaration depends on the path to which the supplied document is saved). Next
we create an adapter-factory instance:

The Obix Configuration Framework: User and Developer Guide 5

 ConfigurationAdapterFactory
adapterFactory=ConfigurationAdapterFactory.newAdapterFactory();

The above statement returns a new instance of the default factory—packaged with
the distribution. This default behaviour can be overridden by specifying an
adapter-factory implementation at execution time—as the value of the runtime
property ‘org.obix.configuration.AdapterFactory’.

Next we create an adapter instance as shown below.

ConfigurationAdapter adapter=adapterFactory.create(null);
 adapter.setValidate(false);

Validation is disabled in this example, which means that the adapter will not use a
validating xml parser to parse the configuration document. This is not
recommended—at least not for development—but is used here for simplicity.

Using the adapter instance, we read the configuration data into a configuration
object.

adapter.adaptConfiguration(Configuration.getConfiguration(),
configLocation);

Notice that the configuration data is read into the global/static configuration
instance—obtained by the invocation ‘Configuration.getConfiguration()’. This is ideal
for scenarios where you want the configuration data to be accessible statically
across your application. In other situations this may not be ideal; it may be more
appropriate to create a new (non-static) configuration instance. An example of
where not to use the static instance is a load-balanced/distributed J2EE
environment—where the static context may be meaningless, and, where it may be
more ideal to use an instance bound into a JNDI context (see section 3.2 for
options).

1.2.2Modules and Document-Import (Include) Example
For this application, assume that the task is to create an order-management
system of some sort, where there are several databases as opposed to a single one.
Assume also that for this application, there is a need to cache the static-data [from
each individual database] on the file-system so as to remove the need for database
fetches; and that achieving this involves specifying temporary file paths in the
configuration set—mapped to the relevant database by grouping it with the
connection information for the database.

We proceed by modifying the configuration file for example, so as to create a
configuration set where the connection information for the global database is
stored in the root module, and, where there are sub-modules for the other
databases—called price, cust (for customer data), and order. The resulting file is
as follows (note: the new entries/changes are shown in bold font):

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <entry entryKey="global.database.url">
 <value>jdbc:mysql://localhost:2500/globalDb</value>
 </entry>
 <entry entryKey="database.userId">
 <value>appuser</value>
 </entry>
 <entry entryKey="database.password">
 <value>nopassword</value>

The Obix Configuration Framework: User and Developer Guide 6

 </entry>

 <!--Connection info for prices database-->
 <configuration-module moduleId="price.db.connection.info">
 <entry entryKey="database.url">
 <value>jdbc:mysql://localhost:2501/pricesDb</value>
 </entry>
 <entry entryKey="database.userId">
 <value>pricedbuser</value>
 </entry>
 <entry entryKey="database.password">
 <value>nopassword</value>
 </entry>

 <!--sub configuration module which holds temp
 filespace details-->
 <configuration-module moduleId="price.tmp.space">
 <entry entryKey="data.cache">
 <value>C:/ObixExampleApp/data/price.cache</value>
 </entry>
 </configuration-module>
 </configuration-module>

 <!--Connection info for customer database-->
 <configuration-module moduleId="cust.db.connection.info">
 <entry entryKey="database.url">
 <value>jdbc:mysql://localhost:2502/custDb</value>
 </entry>
 <entry entryKey="database.userId">
 <value>custdbuser</value>
 </entry>
 <entry entryKey="database.password">
 <value>nopassword</value>
 </entry>

 <!--import the configuration file
 which holds the temp filespace details
 -->
 <configuration-import isRelativeLink="true"
 moduleId="cust.tmp.space">
 cust.cache.configuration.xml
 </configuration-import>
 </configuration-module>

 <!--Connection info for the order database-->
 <configuration-import isRelativeLink="true"
 moduleId="order.db.connection.info">
 order.db.configuration.xml
 </configuration-import>
</configuration>

Rather than delving straight into the Java class which makes use of this
document, we will first of all dissect it, exploring its different elements and what
they mean; and for each element we present corresponding Java code for accessing
its contents. We will start with the connection information for the price database,
which is declared as a module. The declaration for this module (also shown above)
is re-iterated as follows:

<!--Connection info for prices database-->
 <configuration-module moduleId="price.db.connection.info">

.

.

.
 <!--sub configuration module which holds temp
 filespace details-->
 <configuration-module moduleId="price.tmp.space">

The Obix Configuration Framework: User and Developer Guide 7

.

.
 </configuration-module>
 </configuration-module>

To access this module programmatically, we use the following code:

 Configuration priceDbConfig = Configuration.getConfiguration().
 getModule("price.db.connection.info");

This call returns the configuration module (node) with id
“price.db.connection.info”—as you will notice all configuration modules are
encapsulated by instances of the class ‘org.obix.configuration.Configuration’, thus
each instance is effectively a tree node which can have descendants. Note that in
the configuration file, the module “price.db.connection.info” also consists of an
inline module, with id “price.tmp.space”, encapsulated within a child
<configuration-module> element. A reference to this child module can be obtained
as follows:

 Configuration priceTempSpaceConfig =priceDbConfig.
getModule("price.tmp.space");

There is no programmatic limit to the depth of a configuration tree, so a
configuration file can consist of several child modules, which themselves can also
have descendants. Thus a <configuration-module> element can contain several
other <configuration-module> nodes, which in themselves can also have child
nodes. Thus the following structure is possible.

< configuration-module …>
 <configuration-module …>
 <configuration-module …>
 …….
 </configuration-module>
 </configuration-module>
</configuration-module >

The full text of the test method which accesses and prints out the configuration
values related to the price database is as follows:

public static void printPriceDbConfigInfo()
{
 Configuration priceDbConfig = Configuration.getConfiguration().

 getModule("price.db.connection.info");

 Configuration priceTempSpaceConfig =
 priceDbConfig.getModule("price.tmp.space");

 System.out.println ("Price DB URL : " + priceDbConfig.getStringValue
("database.url"));

 System.out.println ("Price DB UserId : " + priceDbConfig.getStringValue
("database.userId"));

 System.out.println ("Price DB Password : " + priceDbConfig.getStringValue

("database.password"));

 System.out.println ("Price DB File Cache : " +
priceTempSpaceConfig.getStringValue

("data.cache"));

 }

The Obix Configuration Framework: User and Developer Guide 8

Next, consider the configuration information for the cust database, which is
encapsulated within the following element.

 <!--Connection info for customer database-->
 <configuration-module moduleId="cust.db.connection.info">

.

.

.
 <!--import the configuration file
 which holds the temp filespace details
 -->
 <configuration-import isRelativeLink="true"
 moduleId="cust.tmp.space">
 cust.cache.configuration.xml
 </configuration-import>
 </configuration-module>

This node is largely the same as the element encapsulating the data for the price
database, with the main distinction being that we use a <configuration-import>
node to include the configuration data for the file cache, as opposed to an inline
module [declared within a <configuration-module> node]. The <configuration-import>
element can occur as a child of either a
<configuration> or <configuration-module> node. It requires two attributes, the first
of which [the ‘isRelativeLink’ attribute] determines whether or not the import path
—the node’s body content—is to be resolved relative to the directory (the URI
context) of the encapsulating configuration document [in this case
‘C:/ObixExampleApp/config/’] or as an absolute URI. Considering that a
configuration document can be imported at several points, and possibly with
different connotations—i.e. re-used in several scenarios—the second (and
mandatory) attribute ‘moduleId’ provides a unique id [within the scope of the
importing element] for the imported configuration-data.

The imported module can be accessed as follows:

Configuration custDbConfig =Configuration.getConfiguration().
 getModule("cust.db.connection.info");

Configuration custTempSpaceConfig =custDbConfig.getModule("cust.tmp.space");

As you can see from the above code segment, there is no difference—from the
perspective of the Java application—between an inline module and an imported
one. The use of either is really down to choice, but an import is probably best
suited for large amounts of data which can be externalised so as to make the
importing file more legible. Next, we examine, the imported file
‘cust.cache.configuration.xml’ listed next:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <entry entryKey="data.cache">
 <value>C:/ObixExampleApp/data/cust.cache1</value>
 <value>C:/ObixExampleApp/data/cust.cache2</value>
 <value>C:/ObixExampleApp/data/cust.cache3</value>
 <value>C:/ObixExampleApp/data/cust.cache4</value>
 </entry>
</configuration>

Notice that the entry ‘data.cache’ has four values as opposed to a single one; this
demonstrates that a configuration-entry is not restricted to a single value.
Actually, it can have one or more values, thus rendering it to situations where
you need to associate multiple values to the same key/identifier. Examination of

The Obix Configuration Framework: User and Developer Guide 9

the method listed below demonstrates how these values can be accessed. Note that
the first value, with index ‘0’, is the default value, and as such we don’t have to
supply an index when accessing it—although you can if you wish to.

public static void printCustDbConfigInfo()
{
 Configuration custDbConfig =Configuration.getConfiguration().

 getModule("cust.db.connection.info");

 Configuration custTempSpaceConfig = custDbConfig.getModule("cust.tmp.space");

 System.out.println ("Cust DB URL : " +
 custDbConfig.getStringValue("database.url"));

 System.out.println ("Cust DB UserId : " +
 custDbConfig.getStringValue("database.userId"));

 System.out.println ("Cust DB Password : " +
 custDbConfig.getStringValue("database.password"));

 System.out.println ("Cust DB File Cache 1: " +
 custTempSpaceConfig.getStringValue("data.cache"));

 System.out.println ("Cust DB File Cache 2: " +
 custTempSpaceConfig.getStringValue("data.cache",1));

 System.out.println ("Cust DB File Cache 3: " +
 custTempSpaceConfig.getStringValue("data.cache",2));

 System.out.println ("Cust DB File Cache 4: " +
 custTempSpaceConfig.getStringValue("data.cache",3));

}

When invoked, this method should produce the following output:

Cust DB URL : jdbc:mysql://localhost:2502/custDb
Cust DB UserId : custdbuser
Cust DB Password : nopassword
Cust DB File Cache 1: C:/ObixExampleApp/data/cust.cache1
Cust DB File Cache 2: C:/ObixExampleApp/data/cust.cache2
Cust DB File Cache 3: C:/ObixExampleApp/data/cust.cache3
Cust DB File Cache 4: C:/ObixExampleApp/data/cust.cache4

Finally, we examine the configuration information for the orders database, revisited
in the following listing:

<!--Connection info for the order database-->
<configuration-import isRelativeLink="true"
 moduleId="order.db.connection.info">
 order.db.configuration.xml
</configuration-import>

As should already be clear, the node <configuration-import>, imports the contents
of the file ‘order.db.configuration.xml’ as a configuration module with identifier
‘order.db.connection.info’. The contents of the imported document are listed next.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <entry entryKey="database.url">
 <value>jdbc:mysql://localhost:2503/orderDb</value>
 </entry>
 <entry entryKey="database.userId">
 <value>ordermanager</value>
 </entry>

The Obix Configuration Framework: User and Developer Guide 10

 <entry entryKey="database.password">
 <value>nopassword</value>
 </entry>

 <configuration-module moduleId="order.tmp.space">
 <entry entryKey="data.cache">
 <value>C:/ObixExampleApp/data/order.cache</value>
 </entry>
 </configuration-module>
</configuration>

The following method accesses and prints out the values of the
‘order.db.connection.info’ module.

public static void printOrderDbConfigInfo()
{
 Configuration orderDbConfig =
 Configuration.getConfiguration().
 getModule("order.db.connection.info");

 Configuration orderTempSpaceConfig =orderDbConfig.
getModule("order.tmp.space");

 System.out.println ("Order DB URL : " +
 orderDbConfig.getStringValue("database.url"));

 System.out.println ("Order DB UserId : " +
 orderDbConfig.getStringValue("database.userId"));

 System.out.println ("Order DB Password : " +
 orderDbConfig.getStringValue("database.password"));

 System.out.println ("Order DB File Cache : " +
 orderTempSpaceConfig.getStringValue("data.cache"));

 }

As is evident from the above method, the imported module is accessed in the same
way as an inline module; thus demonstrating that the Java API is independent of
the module definition approach used. This method, when invoked, should produce
the following output.

Order DB URL : jdbc:mysql://localhost:2503/orderDb
Order DB UserId : ordermanager
Order DB Password : nopassword
Order DB File Cache : C:/ObixExampleApp/data/order.cache

NOTE: The Java class for this application is ConfigUserV2.java which is included
in the examples archive, as are the referenced configuration documents.

1.2.3Auto-Reload Example
The framework provides auto-reload capabilities for configuration data, thus
making it possible to make “hot” configuration changes. This is provided for
applications where the ability to change configuration entries at runtime is
required. To paraphrase, it is provided for applications which require that
configuration changes are detected and applied without the application having to
be restarted. Without this feature, the alternative of course would be to restart the
application each time the configuration data is amended, which is far from
desirable in scenarios where system downtime is intolerable.

To demonstrate this feature, we present a simple configuration document—listed
below—which we assume will be saved as ‘C:/ObixExampleApp/config/editable-
configuration.xml’.

The Obix Configuration Framework: User and Developer Guide 11

<?xml version="1.0" encoding="UTF-8"?>
<configuration reloadOnModify="true" reloadInterval="1000">
 <entry entryKey="test-value">
 <value>Initial Value</value>
 </entry>
</configuration>

Notice that the <configuration> node has two new attributes (highlighted in bold);
the value ‘true’ assigned to first one, ‘reloadOnModify’, instructs the framework to
monitor the configuration document for changes; the second attribute
‘reloadInterval’ is non-mandatory as it has a default value—discussed later—but
we specify it here for completeness. The value of this attribute dictates the interval
(in milliseconds) at which the framework should inspect the configuration
document for changes. Evidently the shorter the interval, the higher the strain it
places on virtual-machine resources; hence for any given application, the value
used is a judgment-call on the part of the developer/system-administrator.

The following code listing presents a simple class, which we use to demonstrate
the framework’s ability to detect and re-apply configuration changes at runtime.
The class reads, and prints out, the initial value of the configuration-entry ‘test-
value’ and loops continuously (with a wait interval of 998 milliseconds). In each
iteration of the loop, it re-reads the value of the entry, and when it detects that a
new value has been applied by the framework, it prints out the new value and
breaks from the loop.

import java.util.Calendar;
import org.obix.configuration.Configuration;
import org.obix.configuration.ConfigurationAdapter;
import org.obix.configuration.ConfigurationAdapterFactory;

public class ConfigUserV3
{

 public static void main(String[] args)
 {
 String configLocation = "F:/ObixExampleApp/config/editable-configuration.xml";

 try
 {
 ConfigurationAdapterFactory adapterFactory=
 ConfigurationAdapterFactory.newAdapterFactory();

 ConfigurationAdapter adapter=adapterFactory.create(null);

 adapter.setValidate(false);
 adapter.adaptConfiguration(
 Configuration.getConfiguration(),configLocation);

 String initialValue= Configuration.
 getConfiguration().getStringValue("test-value");

 System.out.println("Value at time '" +
 Calendar.getInstance().getTimeInMillis() +
 "' is '" + initialValue+"'");

 int sleepInterval = 998;
 String newValue;
 while (true)
 {
 Thread.sleep(sleepInterval);

 newValue= Configuration.getConfiguration().getStringValue("test-value");

 if (!initialValue.equals(newValue))
 {
 System.out.println("Value at time '" +

The Obix Configuration Framework: User and Developer Guide 12

 Calendar.getInstance().getTimeInMillis() +"' is '"
 +newValue+"'");

 break;
 }

 }
 }
 catch (Exception exce)
 {
 exce.printStackTrace();
 }
 }//end method main(..)

}//end class

If we execute this class, it should produce initial output similar to the following:

Value at time '1129846864390' is 'Initial Value'

To test the auto-reload feature, we modify (using a suitable text/xml editor) the
value of the entry with id ‘test-value’ to something like “Modified Value”, as shown
in the file listing below (note: new value shown in bold):

<?xml version="1.0" encoding="UTF-8"?>
<configuration reloadOnModify="true" reloadInterval="1000">
 <entry entryKey="test-value">
 <value>Modified Value</value>
 </entry>
</configuration>

On saving/committing the change, the test-application will produce output similar
to the following, and then exit.

Value at time '1129846896328' is 'Modified Value'

1.2.4Examples Summary
In this section, we have used three example applications to demonstrate how the
framework can be easily integrated into a Java application. We have also explored
the structure of configuration documents, demonstrating how configuration data
can be organised into modules, and how external self-contained documents can be
imported as configuration modules. It has also been demonstrated that the API for
accessing configuration modules is independent of the manner in which the
modules are declared. Finally, we have demonstrated that the framework is
capable of automatically detecting and applying changes to configuration data,
without the need for application restarts.

2 Framework Structure
In order to aid extension, and to sow the seeds of re-use, the framework is
organised around the concepts of a specification and an implementation. The
specification effectively defines the interaction between the framework and
applications, whilst an implementation manages the details of this interaction.
This is to enable developers to either supply their own implementations, or to
modify the default implementation, so as to suit their requirements.

The framework is packaged with a default implementation codenamed Janex (see
section 2.2), and as such there is no need to develop your own. The Janex

The Obix Configuration Framework: User and Developer Guide 13

implementation should meet most requirements, however, where this is not the
case, it is possible to either build extensions on top of it, or replace it completely
without impacting application code.

The following subsections explain the specification in greater detail, and describe
the constituent parts of the Janex implementation.

2.1 Specification Overview
The specification, as already mentioned, defines the framework’s core interfaces
and classes—including the responsibilities of implementing classes and extensions
—which in turn define how applications interact with it. The specification also
defines the structure of configuration documents, thus establishing the rules by
which configuration documents are governed irrespective of the underlying
implementation.

2.1.1Configuration Document Structure
This section explores the structure of a configuration document. To paraphrase, it
provides a textual (and functional) description of the configuration XML
schema/doctype. The aim is to give the reader a sufficient understanding of the
elemental structure of configuration documents, by describing the practical
functions of each element type. We begin by describing how to create a skeletal
configuration document.

2.1.1.1 Document Skeleton
A configuration document begins with the root element <configuration>, and, as
such, it will have the following basic (and mandatory) structure.

<configuration>
 ………..
</configuration>

The <configuration> element supports the following attributes:

name value-type use default description
reloadOnModify boolean optional false Indicates whether or not the configuration

document should be monitored for changes. When
set to ‘true’ all changes to the document are
synchronized with the corresponding
org.obix.configuration.Configuration instance.

reloadInterval long optional N/A Only valid where the attribute reloadOnModify has
a value of true. It indicates the interval, in
milliseconds, at which the document should be
examined for changes. The lower the interval, the
more frequent the document is inspected for
changes; the higher the interval, the less the
frequency. Where a value is not specified, the
implementation will use a default value—which for
the Janex implementation is 60000 milliseconds.

Example usage of this element is as follows:

<configuration reloadOnModify="true" reloadInterval="86400000">
 ……
</configuration>

2.1.1.2 Lifecycle Listener Declarations
The framework enables application developers to specify listeners in a
configuration document, which are invoked during the loading of the document.
All listeners must implement the interface
org.obix.configuration.ConfigurationLifecycleListener. Listeners are either invoked

The Obix Configuration Framework: User and Developer Guide 14

before the configuration data is loaded into memory, or afterwards; consequently,
and logically, listeners are declared either at the start, or end, of the configuration
document. Note that, where listeners are declared at the start of the document,
they will not have access to the configuration-data in the document, as the data
would not have been loaded into memory when they are invoked. On the other
hand, listeners that are declared at the end of a document will have access to all
the data in the document (including imported modules), as the data would have
been loaded pre the listener invocation.

Listeners to be invoked pre document loading are declared under the element
<execute-before-adapt>, which is valid at the start of the configuration document.
Each listener is instantiated with a <listener> element. Listeners to be invoked post
document loading are declared under the element <execute-after-adapt> (which is
valid at the end of the configuration document) and are also instantiated using
<listener> elements.

The <listener> element has a single attribute, described in the following table:

name value-type use default Description
class string mandatory N/A The fully qualified class-name of the listener. The

class must implement the interface
org.obix.configuration.ConfigurationLifecycleListener

It is possible to supply arguments/parameters to a listener using the <parameters>
element. Each parameter has a single key, can have multiple values, and is
encapsulated in a <parameter> element. The tag has a single attribute, described
next:

name value-type use default description
entryKey string mandatory N/A The key/identifier for the argument. Note that

arguments are supplied to the listener
implementation as a java.util.Map implementation,
and as such, each list of values have to be keyed
against a name/key/id.

Listener parameters can have multiple values for each name/key/identifier, where
each value is encapsulated by a <value> tag.

Below is an example of a listener declaration, which causes the Apache Log4J
extension (implemented as a listener) to be invoked before the configuration data,
in the given document, is loaded. The Apache Log4J listener is discussed in greater
detail in section 3.3.1.

<configuration>
 <execute-before-adapt>
 <listener class="org.obix.janex.ext.log4j.ObixLog4jAdapter">
 <parameters>
 <parameter entryKey="log4j.configuration.file">
 <value>log4j-config.xml</value>
 </parameter>
 <parameter entryKey="log4j.configuration.file.resolution.policy">
 <value>RELATIVE</value>
 </parameter>
 </parameters>
 </listener>
 </execute-before-adapt>

The Obix Configuration Framework: User and Developer Guide 15

 ……..

[CONFIGURATION DATA GOES HERE]

 ……..

 </configuration>

The next example, demonstrates a declaration of a listener (highlighted in bold)
which is to be invoked only after the data contained within the configuration
document is loaded. For the listener implementation, we use the Hibernate
extension which is described in section 3.3.2, and which is implemented as a
lifecycle listener.

<configuration reloadOnModify="true" reloadInterval="86400000">
 <execute-before-adapt>
 <listener class="org.obix.janex.ext.log4j.ObixLog4jAdapter">
 <parameters>
 <parameter entryKey="log4j.configuration.file">
 <value>log4j-config.xml</value>
 </parameter>
 <parameter entryKey="log4j.configuration.file.resolution.policy">
 <value>RELATIVE</value>
 </parameter>
 </parameters>
 </listener>
 </execute-before-adapt>

 ……..

[CONFIGURATION DATA GOES HERE]

 ……..
 <execute-after-adapt>
 <listener
class="org.obix.janex.ext.hibernate.HibernateConfigurationInitializer">
 <parameters>
 <parameter entryKey="hibernate.mapped.classes">
 <value>com.myorg.phonebook.Address</value>
 <value> com.myorg.phonebook.Person</value>
 </parameter>
 </parameters>
 <listener>
 </execute-after-adapt>

 </configuration>

2.1.1.3 Configuration Entries
Configuration entries are denoted by the <entry> element, which can occur as a
child of either: the root <configuration> element or a <configuration-module>
element. In either case, it must occur before the declaration of modules—inline or
imported. Hence if it occurs under the root <configuration> element, it must occur
just after the <execute-before-adapt> element and before the first <configuration-
module> or <configuration-import> element. If it occurs under a <configuration-
module> node, it must do so before the first child <configuration-module> or
<configuration-import> element.

Each entry must specify a unique—within the context of the encapsulating module
alone, and excluding child modules—key/identifier against which its values are
stored. The key is specified as the value of the entryKey attribute, which is
described below:

name value-type use default Description

The Obix Configuration Framework: User and Developer Guide 16

entryKey string mandatory N/A The key to which the entry’s values should be
associated in the corresponding
org.obix.configuration.Configuration instance. The
key is the parameter-value supplied to a
getStringValue(….) method invoked on the instance,
in order to return the value(s) for the entry. The key
only needs to be unique in the local context of the
entry’s parent module. As such, the module’s parent
or child can have an entry with the same key.

An entry can have several values, each encapsulated with a <value> tag—which
does not have any attributes and expects a string body-content.

The following example demonstrates the use of the <entry> element (highlighted in
bold).

<configuration reloadOnModify="true" reloadInterval="86400000">
 <execute-before-adapt>

…………………….

 </execute-before-adapt>

<entry entryKey="database.url">
 <value>jdbc:mysql://localhost:2503/orderDb</value>
 </entry>
 <entry entryKey="database.userId">
 <value>ordermanager</value>
 </entry>
 <entry entryKey="database.password">
 <value>nopassword</value>
 </entry>

 <configuration-module moduleId="order.tmp.space">
 <entry entryKey="data.cache">
 <value>C:/ObixExampleApp/data/order.cache</value>
 </entry>

 <configuration-module moduleId="order.secondary.space">
 <entry entryKey="data.cache">
 <value>C:/ObixExampleApp/data/order.cache1</value>
 <value>C:/ObixExampleApp/data/order.cache2</value>
 <value>C:/ObixExampleApp/data/order.cache3</value>
 <value>C:/ObixExampleApp/data/order.cache4</value>
 </entry>

 <configuration-import isRelativeLink="true"
 moduleId="import.module.1">
 imported-config.xml
 </configuration-import>

 </configuration-module>

 </configuration-module>

 <execute-after-adapt>
…………………….

 </execute-after-adapt>

 </configuration>

Although this should be apparent from the quickstart examples, it is important to
state that an entry is accessible, programmatically, only through the
org.obix.configuration.Configuration instance which corresponds to the module—the
<configuration> [where applicable referenced by the moduleId of the encapsulating
<configuration-import> element], or <configuration-module> element—under which it
is declared.

The Obix Configuration Framework: User and Developer Guide 17

2.1.1.4 Modularizing Configuration Data
Configuration modules can either be declared ‘inline’ within a configuration
document, or an external document can be referenced as an ‘import’ module. For
simplicity, we describe an ‘inline’ module as one whose contents and child
modules are specified within the same configuration document; whilst an ‘import’
module is one whose contents are taken whole from an externally referenced
document. Note that an inline module can contain child modules specified as
import modules.

Each module corresponds to an instance of the class
org.obix.configuration.Configuration. For a given configuration set, instances of this
class are effectively built into a module-tree, where the root configuration
document corresponds to the root instance. For a given parent module, a child
module can be retrieved by calling the method getModule(…) specifying the
identifier of the child as the argument. This method is applicable regardless of how
the module is declared i.e. regardless of whether or not the module is declared
inline or via an import.
An inline module, depending on where it occurs, can be defined using the
<configuration-module> tag. The resulting element can contain configuration
entries, and other modules—either inline or import modules. This element-type
supports a single attribute which is described below:

name value-type use default description
moduleId string mandatory N/A A unique identifier for the module. This is the value

that is passed to the getModule(…) method, when
invoked on the parent module, so as to obtain a
reference to the org.obix.configuration.Configuration
instance corresponding to the module.

The following example illustrates how the <configuration-module> element can be
used.

<configuration reloadOnModify="true" reloadInterval="86400000">
 <execute-before-adapt>

…………………….
 </execute-before-adapt>

 <configuration-module moduleId="parent.inline.module">

 <configuration-module moduleId="child.inline.module">

 <configuration-module moduleId="grandchild.inline.module">

…………………….

 </ configuration-module>

 </configuration-module>

 </configuration-module>

 <execute-after-adapt>
…………………….

 </execute-after-adapt>

 </configuration>

In some scenarios, it is helpful to have the data for a configuration module
externalized in a separate document; in other words, it can sometimes be useful to
include an entire configuration document as a child module. This can be achieved
using the <configuration-import> element, which can occur as a child of either the

The Obix Configuration Framework: User and Developer Guide 18

<configuration> or <configuration-module> element. If it occurs as a direct child of a
<configuration> node, it must be placed after all <entry> and <configuration-
module> elements and before the listener block <execute-after-adapt>. Where it
occurs as a child of a <configuration-module> element, it must occur after all
<entry> and child <configuration-module> elements.

The <configuration-import> element’s body (text) is expected to contain a locator
(such as a filename or URI) to the document to be imported. This element-type
supports two attributes which are described below:

name value-
type

use default description

moduleId string mandatory N/A A unique identifier for the module defined by the
import i.e. the identifier of the module into which the
imported data will be loaded. This is the value that is
passed to the getModule(…) method, when invoked on
the parent module, so as to obtain an object
reference to the imported module.

isRelativeLink boolean optional true Indicates whether or not the body-content (text) of
the element should be interpreted as a relative or
absolute URI. If a value of true is specified, the
adapter will attempt to find the imported document
within the location where the importing document is
stored (e.g. in the case of filepaths, this would be the
same directory). If a value of false is specified, then
the element’s body text is interpreted as an absolute
URI.

The following example illustrates the use of the <configuration-import> element.

<configuration reloadOnModify="true" reloadInterval="86400000">
 <execute-before-adapt>

…………………….
 </execute-before-adapt>

 <configuration-module moduleId="parent.inline.module">

 <configuration-module moduleId="child.inline.module">

 <configuration-module moduleId="grandchild.inline.module">

…………………….

 </ configuration-module>
 <configuration-import moduleId="grandchild.module.import">
 a-relative-file.xml
 </configuration-import>
 </configuration-module>

 <configuration-import moduleId="child.module.import" isRelativeLink="false">
 file://server-root/an-absolute-filepath.xml
 </configuration-import>

 </configuration-module>

 <configuration-import moduleId="parent.module.import"
 isRelativeLink="false">
 http://www.mywebsite.com/config/an-absolute-url.xml
 </configuration-import>

 <execute-after-adapt>
…………………….

 </execute-after-adapt>

 </configuration>

The Obix Configuration Framework: User and Developer Guide 19

2.1.2Java API
An application’s interaction with the framework is governed by the classes and
interfaces defined in the package ‘org.obix.configuration’, which is illustrated in the
following diagram.

In this subsection, we present a summary of the objects and interfaces, which
constitute this package, including their roles and responsibilities. This section
should be read to gain a deeper insight into the workings of the framework, as well
as a pre-cursor to extending the base distribution or creating your own
implementation.

2.1.2.1 Adapters and Adapter-Factories
Configuration data is loaded and managed by an adapter, where an adapter is a
class that implements the interface org.obix.configuration.ConfigurationAdapter.

An adapter instance is obtained through an adapter-factory—an instance of the
abstract class org.obix.configuration.ConfigurationAdapterFactory. This class
provides the static method ‘newAdapterFactory(…)’ which returns the adapter-
factory implementation that is applicable to the current runtime. It determines the
implementation by examining the system/runtime property
“org.obix.configuration.AdapterFactory”; the value of this property must be the fully
qualified name of a Java class which extends the abstract class. Where this
property is not specified, the method returns an instance of the default factory,
org.obix.janex.j2seadapter.J2SEConfigurationAdapterFactoryImpl.

Note that some of the extensions provided by the Janex implementation enable
adapters to be instantiated and configured through constructs such as JMX, or
J2EE application descriptors, which we will discuss later (see section 3.2).

An adapter’s role is simply to load a configuration set, specified by the location of
the root configuration document, into an instance of the class
org.obix.configuration.Configuration; where this instance corresponds to the root
configuration-document i.e. the root of the module tree. If the root-document
defines further child modules, it is the responsibility of the adapter to encapsulate
each of these in a child object. Thus each module will correspond to an instance of
the class org.obix.configuration.Configuration, and every instance (except for the

The Obix Configuration Framework: User and Developer Guide 20

root) will have the root instance as its ancestor—i.e. can be traced back to the root
instance.

In order to simplify the task of implementing custom adapters, and to provide
access to package-protected constructs in the package ‘org.obix.configuration’, the
framework provides an abstract adapter class
org.obix.configuration.AbstractConfigurationAdapter. It is recommended that
developers, who wish to implement custom adaptors, do so by extending this class.

NOTE: An adapter or factory instance is not necessarily thread-safe; however there
is no limit to the number of adapters or factories that can be instantiated by an
application.

2.1.2.2 Configuration and Configuration-Entries
As previously mentioned, configuration modules are represented by instances of
the class org.obix.configuration.Configuration. The root configuration document—
located via the URI supplied to the org.obix.configuration.Adapter instance—
represents the root org.obix.configuration.Configuration object. Where this
document defines modules, these modules are child
org.obix.configuration.Configuration instances, which can be obtained by invoking
the method getModule(…) on the parent, specifying the child module’s identifier as
its argument. Where these child modules also have child modules, their
corresponding instances will also have child instances, which can be referenced in
similar fashion. Consequently, instances of this class form a tree structure,
mirroring the module structure of the configuration data-set, with the root-
configuration-document represented by the root instance. The root instance can be
determined by the return value of the method isRoot(…), which should return ‘true’
if the instance corresponds to the root of the module tree.

The specification provides a static instance of the class
org.obix.configuration.Configuration which can be obtained by invoking the static
method getConfiguration() on the class. The adapter implementation will generally
expect that an instance is specified, into which the configuration data will be
loaded, and it is perfectly allowable to use the static instance. In fact, it is made
available for environments which do not have complex data-segregation
requirements, and where data can easily be shared using a static context. In some
other environments this is not possible or perhaps just not desirable, and in such
scenarios application developers can elect for the configuration data to be loaded
into other [non-static] instances. More advanced adaptors (see 3.2) allow for new
instances to be created and bound into a naming-context—applicable in
environments where JNDI is supported. Such strategies may be better suited to
enterprise environments where more comprehensive data sharing strategies are
provided.

Configuration entries are encapsulated by instances of the class
org.obix.configuration.ConfigurationEntry; however to reduce the call depth of
applications, convenience methods are provided in
org.obix.configuration.Configuration which, to a great extent, remove the need to
directly reference entry instances.

2.1.2.3 Lifecycle Listeners
A lifecycle listener is a class which implements the interface,
org.obix.configuration.ConfigurationLifecycleListener, and consequently is able to
receive notification of events at the start, and end, of the configuration document
loading process. The listener interface is provided to enable developers to easily

The Obix Configuration Framework: User and Developer Guide 21

perform application initialization tasks at the same time as the loading of
configuration data. For example instantiating database-connection pools, or
environment-specific setup such as performing system/environment diagnostics.

Listeners are declared within a configuration-document, and are invoked each time
the document is loaded. As such, if a given document is imported (as a module) at
x different points in a configuration set, the listeners related to it are executed x
times each. If the ‘reloadOnModify’ feature is enabled in a document, the listeners
declared in the document will be executed each time it is reloaded. Each listener
declaration results in a new instance of the listener being created by the relevant
adapter, and as such, multiple declarations of the same listener-class will result in
multiple instances of the given type.

Listeners can be declared at two points in a configuration document, either at the
start under the node <execute-before-adapt>, or at the end under the node
<execute-after-adapt>. When listeners are declared at the start of a configuration
document, they will be invoked before the data contained within the document is
loaded into a corresponding configuration instance, and consequently will not have
access to the data. Where the listener is declared at the end of a file, it will be
executed after the data contained in the document is loaded; hence it will have
access to the data defined in the document.

It is worth mentioning that listener notification is not necessarily asynchronous;
the listener invocation can be performed by the same thread that reads the
document contents. Also, an unhandled listener exception/error will cause the
load process to be aborted.

2.1.2.4 Exceptions
It is important to mention that all exceptions raised by the framework during the
course of an operation will cause the operation to be halted. For example, if an
exception is raised the first time the configuration data is being loaded, perhaps at
system-startup, the load sequence will be aborted—with the consequence that the
application will not have access to the configuration data. In the same manner, if
an exception occurs whilst the configuration data is being reloaded, as a result of
modification(s) to the source document(s), the reload sequence will be aborted but
the application will still have access to the last loaded set of configuration data.

The framework specifies three exception classes, which are:
org.obix.configuration.ConfigurationException;
org.obix.configuration.ConfigurationLifecycleException;
org.obix.configuration.ConfigurationAdapterException.

All exceptions specified in the framework extend
org.obix.configuration.ConfigurationException. All implementation developers are
obliged to ensure that all exceptions they propagate through the framework are
subclasses of this class. As such, application developers can regard it as the base
class for all framework exceptions. It is provided for the simple reason of
simplifying application error handling.

Exceptions of the type org.obix.configuration.ConfigurationLifecycleException are
thrown by lifecycle listeners to indicate a listener failure. On the failure of a
listener, no subsequent listeners will be executed and the operation being
performed (loading/reloading of data) will be aborted.

The Obix Configuration Framework: User and Developer Guide 22

Adapters and adapter factories throw exceptions of the type
org.obix.configuration.ConfigurationAdapterException when an operation fails. This
indicates that: an error has occurred during the course of instantiating or
accessing an adapter or a factory; or that an error has occurred during the process
of loading or reloading configuration data. As with all other framework exceptions,
when an instance of this exception is thrown, the operation being performed is
aborted.

2.2 The Janex Implementation
Janex is the codename of the default implementation supplied with the framework.
Its role is to manage configuration data in a manner transparent to client
applications. Application developers should not have to reference
classes/interfaces in the implementation programmatically; rather, their
interaction should be restricted solely to specification interfaces and classes.

The Janex implementation provides sufficient functionality to meet the needs of
most applications, and as such, there should be little or no need to extend it, nor
to write your own custom implementation—except for highly specialised
requirements. It provides a factory implementation and a host of adapters for both
standard and enterprise application environments—supporting standards such as
J2EE and JMX. In addition, it also provides a continuously evolving suite of
extensions to ease the integration of other frameworks such as Log4J and
Hibernate. In cases where developers wish to extend its functionality, it provides a
common set of utilities to simplify this.

The following subsections summarise, briefly, the chief constituents of the
implementation, so as to provide developers with greater knowledge of the facilities
it provides.

2.2.1Adapters and Factories
This implementation provides a single adapter-factory
org.obix.janex.j2seadapter.J2SEConfigurationAdapterFactoryImpl, which creates
instances of the adapter org.obix.janex.j2seadapter.J2SEConfigurationAdapterImpl.
This adapter is most suited for J2SE environments, and for this reason, Janex also
provides two additional adapters:
org.obix.janex.ext.jmx.JMXConfigurationAdapterImpl, and
org.obix.janex.ext.j2ee.ObixServletConfigLoader, which are better suited to
enterprise environments.

2.2.2Lifecycle Listeners
Janex provides listeners to simplify the initialisation of other frameworks. The
listener implementations org.obix.janex.ext.log4j.ObixLog4jAdapter, and
org.obix.janex.ext.hibernate.HibernateConfigurationInitializer enable the
initialisation of Apache Log4J and Hibernate respectively, during loading/reloading
of configuration data. These listeners remove the need for application developers to
programmatically initialise these frameworks in their application code, thus
further simplifying application development. For more information on how to use
these listeners, please see section 3.3.

The Obix Configuration Framework: User and Developer Guide 23

3 Application Integration
The base distribution provides a number of options for integrating the framework
into software applications. The route chosen is probably a trade-off between
flexibility, the environment in which the application is to be deployed, and the
amount code the application developer(s) is willing to write.

In this section, the available integration options are categorised under the
environments to which we feel they are best suited. This is done on the basis that
they offer the best—most achievable—level of flexibility in those environments, as
well as reducing/removing the need for specific application integration code when
used accordingly.

3.1 Basic Integration (J2SE)
In a typical J2SE application, be it an applet, desktop application or standalone
process, there will most likely be an initialization block where the application
creates/sets-up the resources it requires. As opposed to an enterprise
environment, there are generally no standard container facilities in J2SE, where
resource setup can be accomplished extant to application code. For that reason,
the application developer has to call a configuration adapter to actually initiate the
process of loading the configuration data. This should not take more than a few
lines of code as is illustrated below—this approach is also used for the example
applications described in section 1.2.

ConfigurationAdapterFactory adapterFactory=
 ConfigurationAdapterFactory.newAdapterFactory();

ConfigurationAdapter adapter=adapterFactory.create(map);

 adapter.adaptConfiguration(Configuration.getConfiguration(),
 configLocation);

This example can be distilled into the following distinct steps:
1. Obtain an adapter-factory by calling the method

ConfigurationAdapterFactory.newAdapterFactory(). The factory instance
returned by this method will be the default adapter
org.obix.janex.j2seadapter.J2SEConfigurationAdapterFactoryImpl, except you
specify an implementation name as the value of the Java runtime parameter
(using java –D“param-name=param-value”)
“org.obix.configuration.AdapterFactory”. Note that the value of this parameter
must be a fully qualified name of the factory implementation i.e. a class that
extends the abstract class
org.obix.configuration.ConfigurationAdapterFactory.

2. Create an adapter by invoking the method create(java.util.Map) on the
factory instance. The map is used to pass parameters to the factory
instance, and its contents are implementation specific. As such, if the
implementation being used does not require any parameters, it is perfectly
acceptable to specify a null argument.

3. Invoke one of the methods, adaptConfiguration
(org.obix.configuration.Configuration, java.lang.String), adaptConfiguration
(org.obix.configuration.Configuration, java.io.File), or adaptConfiguration
(org.obix.configuration.Configuration, java.net.URL) to load the configuration
data at the specified location into the specified configuration instance.
Where the location can either be specified as a URL, file-path or URI string.
A configuration instance, into which the data is to be loaded, must also be

The Obix Configuration Framework: User and Developer Guide 24

supplied; however a static instance is provided and this may be ideal for
J2SE environments where information can be shared easily by using a
static context. To use the static instance, simply pass its reference to the
adaptConfiguration(….) method, where the reference is obtained by calling
the method Configuration.getConfiguration(). Alternatively, you may wish to
use your own instance, which can be instantiated like any other Java object
using the new operator.

3.2 Advanced (Enterprise) Integration
The advantage of an enterprise environment—such as J2EE—is that there are
standard services provided by the container; thus reducing/removing the need for
developers to write infrastructure code.

The main advantage of an enterprise environment, from the perspective of the
framework, is the ability to completely externalise the loading of configuration data
from application logic. In simple terms, within an enterprise environment, there is
little or no need to actually write code to manually invoke a configuration adapter.
In addition to this, an enterprise environment also provides naming facilities (via
JNDI), which in turn means that configuration data/instances can be more easily
shared across an application’s component landscape. Application-developers do
not have to rely on a static context or write custom code to share configuration
instances across different enterprise components. The framework provides a set of
enterprise adapters to enable configuration data to be automatically bound into
the JNDI context of the executing application. This means that configuration data
can be treated, by the application, as any other resource—e.g. datasources—
accessible via JNDI.

3.2.1Web Application Adaptor
The web-application-adapter is provided for servlet environments. It relies on the
use of the servlet-context-listener (cum adapter implementation)
org.obix.janex.ext.j2ee.ObixServletConfigLoader, which loads the configuration data
at context initialisation.

This listener class is specified in the web-application deployment descriptor, and
makes use of servlet-context parameters; as a consequence, it does not have to be
referenced explicitly in application code. In other words, the application does not
have to contain any code-logic to specifically load configuration data, as this is
achieved entirely in the deployment descriptor.

We illustrate the use of this adapter/context-listener through an example. Assume
that the configuration file is located in a web-application archive (war) at the path
“/WEB-INF/config/application-config.xml”, and that we wish to load the contents of
this file into a configuration object which we want to bind to the naming (JNDI)
location “myWebApp/configuration”. The corresponding web-application
deployment descriptor would look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>My Web Application</display-name>

 <context-param>
 <param-name>obix.configuration.file</param-name>

The Obix Configuration Framework: User and Developer Guide 25

 <param-value>/WEB-INF/config/application-config.xml</param-value>
 </context-param>
 <context-param>
 <param-name>obix.bind.configuration.to.location</param-name>
 <param-value>obixweb/configuration</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.obix.janex.ext.j2ee.ObixServletConfigLoader
 </listener-class>
 </listener>

 <servlet>

 </servlet>

</web-app>

In the above listing, we first of all specify the location of the configuration-
document as a context-parameter with name “obix.configuration.file”. The value of
this parameter is assumed to be relative to the web-application root, however this
can be overridden by the use of a context-parameter which we will describe later
on. The next parameter in the deployment descriptor is the JNDI location to which
the org.obix.configuration.Configuration instance—that results from loading the
configuration data—will be bound. If this parameter is not specified, then the
adapter will load the data into the static instance. Where the JNDI location is
specified, note that the resulting instance will be given the web-application’s name
as its identifier; however it is possible to specify a custom identifier via a context-
parameter which we will describe shortly. The final and most crucial part—from
our perspective—of the web-application deployment-descriptor is the declaration of
the servlet-context listener org.obix.janex.ext.j2ee.ObixServletConfigLoader. This
class is an extension of the J2SE adapter
org.obix.janex.j2seadapter.J2SEConfigurationAdapterImpl, which also implements
the javax.servlet.ServletContextListener interface. As such, in order to use this
extension, you will have to place all the jar files in the base distribution, plus the
jar files in the extension download into the web-application’s classpath.

The following table lists the context parameters which can be used in conjunction
with this adapter/context-listener.

name use default description
obix.validate.configuration.file optional false A value of true indicates that the

adapter should use a validating XML
parser to read the configuration
document.

obix.configuration.file required N/A The location of the configuration
document to be loaded by the adapter.
This location is assumed to be relative
to the root of the web-application
archive, except a value of EXTERNAL
is specified for the context-parameter
‘obix.configuration.filelocation.type’. See
below.

The Obix Configuration Framework: User and Developer Guide 26

obix.configuration.filelocation.type optional N/A A value of EXTERNAL indicates that
the configuration-document is
external to the web-application. As a
consequence, its path will be treated
as an absolute path i.e. the value of
the context-parameter
‘obix.configuration.file’ is treated as an
absolute URI—URLs are also
supported by implication.

All values of this parameter, other
than EXTERNAL, are ignored.

obix.bind.configuration.to.location optional N/A When a value is specified for this
parameter, the configuration data is
loaded into a new
org.obix.configuration.Configuration
instance, and bound into the
application’s default JNDI context
under the specified value. In essence,
the value of this parameter specifies
the name under which the new
instance will be bound. Where this
parameter is not specified, the
configuration data is loaded into the
static configuration instance.

obix.configuration.identifier optional Servlet Context
(Web

Application)
name.

This parameter is only valid in
conjunction with the parameter
‘obix.bind.configuration.to.location’. In
other words, it is only valid when a
new configuration instance is to be
created as part of the configuration-
data load. If a value is not specified for
this parameter, the new instance is
assigned the web-application’s name—
the context name—as its identifier.

3.2.2JMX Adaptor
The JMX adaptor is provided for environments which support the JMX
specification, and allow for custom services to be deployed as standard JMX
MBeans. This adaptor is implemented as an MBean, with the aim of providing a
means to manage configuration data as a container-level resource in the same way
that datasources are managed at container level.

The adapter is provided mainly for applications where the ‘Web Application
Adapter’ (see previous section) can’t be easily used e.g. a middleware application
which consists entirely of EJBs (Enterprise Java Beans). It is also provided for
environments where system-administrators prefer to manually manage
configuration data in the same manner in which other container resources—e.g.
datasources—are managed.

It provides methods which can be invoked, either through an MBean
administration interface, or programmatically, to load configuration data. It is
recommended that the MBean be deployed separately from the application, and
that the relevant configuration data be loaded before the application is deployed,
started, or invoked. This is really a common-sense suggestion aimed at ensuring
that the configuration data which an application requires is available when the
application is executed/invoked. In this scenario, the configuration data would
have to be adapted/loaded in the same way that the system-administrator has to
initialise container resources—e.g. mail sessions, JMS connectors, datasources etc
—before applications are deployed, started or executed.

The MBean provides four MBean operations which are summarised below. For
further details, please consult the framework’s Javadoc at

The Obix Configuration Framework: User and Developer Guide 27

http://obix-framework.sourceforge.net/docs/apidocs/index.html, or the MBean
information—viewable through the MBean administration interface.

operation name description

loadConfigurationFromURL(…) Loads configuration data from a given URL and binds
the resulting org.obix.configuration.Configuration
instance into the default JNDI context under a
specified name. This method is provided for scenarios
where it is inappropriate to share the static/global
configuration instance across an application. Note
that this operation always creates a new configuration
instance, and does not update the static/global
instance in any way.

loadGlobalConfigurationFromURL(…) Loads configuration data from a URL, and, into the
global/static configuration instance. Note that this
method alters the state of the global/static instance
i.e. it overwrites its contents with the data loaded from
the given URL. Sharing the static/global configuration
instance across many components in a large
application is likely to lead to problems; hence, it is
strongly discouraged.

loadConfigurationFromFile(…) Loads configuration data from a given file-path and
binds the resulting org.obix.configuration.Configuration
instance into the default JNDI context under a
specified name. This method is provided for scenarios
where it is inappropriate to share the static/global
configuration instance across an application. Note
that this operation always creates a new configuration
instance, and does not update the static/global
instance in any way.

loadGlobalConfigurationFromFile(…) Loads configuration data from a file, and, into the
global/static configuration instance. Note that this
method alters the state of the global/static instance
i.e. it overwrites its contents with the data loaded from
the given URL. Sharing the static/global configuration
instance across many components in a large
application is likely to lead to problems; consequently,
it is not recommended.

3.3 Examples of Initialisation via Listeners
There are certain tasks, which whilst not directly related to the task of loading
configuration data, can be performed more easily at the same time. These tasks are
generally related to the initialization of application resources, and are more
commonly performed at application start-up.

The framework attempts to simplify these tasks through the use of configuration-
lifecycle-listeners. This section presents two listeners to illustrate how the
initialization of the Apache Log4J logging framework, and the Hibernate object-to-
relational mapping framework, can be simplified.

A note of caution on the use of listeners: each time a configuration document is
loaded—be it at first load, or a reload—any listener’s declared within it are invoked.
Whilst in most cases, this is not a problem; it is still something that should be
borne in mind when you are deploying your application.

3.3.1Log4J
In order to make effective use of the Log4J logging framework, developers generally
have to initialise it at runtime using a Log4J configuration document. The most
common way to achieve this is to invoke one of the static configure(…) methods on
the class org.apache.log4j.xml.DOMConfigurator. It makes sense that this should be

The Obix Configuration Framework: User and Developer Guide 28

done at the time of application initialisation/start-up so as to make logging
functionality fully available to subsequent operations.

Whilst this mode of initialisation is very simple, effective and also efficient, the
Janex distribution provides a configuration lifecycle listener
org.obix.janex.ext.log4j.ObixLog4jAdapter, which altogether eliminates the need to
write code to initialise Log4J. The listener is simply declared at the start of an obix-
configuration-document, with the Log4J configuration-document-location specified
as its parameter. This has the effect of initialising the Log4J framework as part of
the obix-configuration loading process.

The following example configuration document demonstrates the use of this
listener.

<configuration>
 <execute-before-adapt>
 <listener class="org.obix.janex.ext.log4j.ObixLog4jAdapter">
 <parameters>
 <parameter entryKey="log4j.configuration.file">
 <value>log4j-config.xml</value>
 </parameter>
 <parameter entryKey="log4j.configuration.file.resolution.policy">
 <value>RELATIVE</value>
 </parameter>
 </parameters>
 </listener>
 </execute-before-adapt>-->

</configuration>

In the above document, we have simply instructed the adapter to execute the
Janex Log4J adapter before the data defined in the document is loaded. The
adapter expects that we supply the location of the Log4J-XML-configuration-file as
the value of the parameter ‘log4j.configuration.file’. An additional and optional
parameter—‘log4j.configuration.file.resolution.policy’—can be specified to indicate
how this path should be resolved. This listener’s applicable parameters are
explained in greater detail in the table below.

name use description
log4j.configuration.file required The path (URI) of the Log4J configuration document.

The value of this parameter can either be treated as an
absolute or relative URI, or the path to a resource in the
application’s classpath. The manner in which it is
treated depends on the value of the parameter
'log4j.configuration.file.resolution.policy’; however where
this parameter is not specified, heuristics, as described
below, are used to resolve the URI/resource-path.

The Obix Configuration Framework: User and Developer Guide 29

log4j.configuration.file.resolution.policy optional Determines how the value of the parameter
‘log4j.configuration.file’ should be treated. A value of
‘RELATIVE’ indicates that the value is a URI relative to
the location of the obix-configuration-document being
loaded. A value of ‘ABSOLUTE’ indicates that the value
is an absolute URI. Whilst a value of ‘CLASSPATH’
indicates that the value is the path to a resource in the
application’s classpath.

Where no value is specified for this parameter, the
listener sequentially applies the values (and their
related rules) ‘ABSOLUTE’, ‘CLASSPATH’ and
‘RELATIVE’ in a bid to locate the Log4J configuration
file. It adopts the first successful scheme i.e. it stops as
soon as it has found a matching scheme [located the
file]; where all three schemes fail, the listener raises an
exception.

3.3.2Hibernate
In order to manage object-to-relational mapping easily via a Hibernate session, it
may be necessary that the classes (types) of the objects to be managed are
specified during the construction of the Hibernate org.hibernate.SessionFactory
instance. Achieving this programmatically involves adding each type, via the
addClass(…) method, to the org.hibernate.cfg.Configuration instance with which the
SessionFactory is created. Even in the smallest of applications, this can lead to
long initialization blocks.

The Janex distribution provides a lifecycle listener
org.obix.janex.ext.hibernate.HibernateConfigurationInitializer, which simplifies this
process, and removes the need to write initialization code. The following obix-
configuration-document illustrates its use.

<configuration>

 <execute-after-adapt>
 <listener
 class="org.obix.janex.ext.hibernate.HibernateConfigurationInitializer">
 <parameters>
 <parameter entryKey="hibernate.mapped.classes">
 <value>com.example.phonebook.Address</value>
 <value>com.example.phonebook.Person</value>
 <value>com.example.phonebook.ContactDetails</value>
 </parameter>
 </parameters>
 </listener>

</configuration>

The listener expects that the names of the classes, to be managed by the resulting
Hibernate session, are specified as the values of the parameter
‘hibernate.mapped.classes’.

Although Hibernate provides support for JNDI, thus allowing the SessionFactory to
be bound into the application’s JNDI context, this listener also provides facilities to
enable the factory to be bound into the obix configuration instance that
encapsulates the contents of the document being loaded. This is achieved by
specifying the listener parameter ‘hibernate.sessionfactory.config.key’. The value of
this parameter is the configuration key under which the SessionFactory will be
stored. It is recommended that you ensure the key is unique in the context of the
configuration instance. This facility is provided for environments which do not
provide JNDI support.

The Obix Configuration Framework: User and Developer Guide 30

4 Conclusion
This document has described the Obix Configuration Framework (the framework).
It has provided a quick overview of it, as well as “quickstart” examples to “flatten”
the learning curve involved in using it. For more advanced users, it has described
the framework’s structure and the role played by the various components included
in the base distribution. Finally, the document has detailed the different ways in
which the framework can be integrated into application code, as well as utilities
provided by the framework to simplify the use of other frameworks such as Apache
Log4J and Hibernate.

5 Acknowledgements
• Ugo Ezechukwu (editing)
• Yinka Erinle (review)
• Lewis Foti (editing)
• Ian Gerry (review)

The Obix Configuration Framework: User and Developer Guide 31

